当前位置:高中试题 > 数学试题 > 集合运算 > 在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.(Ⅰ)若a1=b1,a2<b2,求数列{bn}...
题目
题型:解答题难度:一般来源:西城区二模
在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当a=2,b=


2
时,数列{bn}中的任意三项都不能构成等比数列;
(Ⅲ)设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由.
答案
(Ⅰ)因为a1=b1,所以a=a+1+b,b=-1,(1分)
由a2<b2,得a2-2a-1<0,
所以1-


2
<a<1+


2
,(3分)
因为a≥2且a∈N*,所以a=2,(4分)
所以bn=3n-1,{bn}是等差数列,
所以数列{bn}的前n项和Sn=
n
2
(b1+bn)=
3
2
n2+
1
2
n
.(5分)
(Ⅱ)由已知bn=3n+


2
,假设3m+


2
3n+


2
3t+


2
成等比数列,其中m,n,t∈N*,且彼此不等,
(3n+


2
)2=(3m+


2
)(3t+


2
)
,(6分)
所以9n2+6


2
n+2=9mt+3


2
m+3


2
t+2

所以3n2-3mt=(m+t-2n)


2

若m+t-2n=0,则3n2-3mt=0,可得m=t,与m≠t矛盾;(7分)
若m+t-2n≠0,则m+t-2n为非零整数,(m+t-2n)


2
为无理数,
所以3n2-3mt为无理数,与3n2-3mt是整数矛盾.(9分)
所以数列{bn}中的任意三项都不能构成等比数列.
(Ⅲ)设存在实数b∈[1,a],使C=A∩B≠∅,
设m0∈C,则m0∈A,且m0∈B,
设m0=at(t∈N*),m0=(a+1)s+b(s∈N*),
则at=(a+1)s+b,所以s=
at-b
a+1

因为a,t,s∈N*,且a≥2,所以at-b能被a+1整除.(10分)
(1)当t=1时,因为b∈[1,a],a-b∈[0,a-1],
所以s=
a-b
a+1
N*
;(11分)
(2)当t=2n(n∈N*)时,a2n-b=[(a+1)-1]2n-b=(a+1)2n+-C2n1(a+1)+1-b,
由于b∈[1,a],所以b-1∈[0,a-1],0≤b-1<a+1,
所以,当且仅当b=1时,at-b能被a+1整除.(12分)
(3)当t=2n+1(n∈N*)时,a2n+1-b=[(a+1)-1]2n+1-b=(a+1)2n+1++C2n+11(a+1)-1-b,
由于b∈[1,a],所以b+1∈[2,a+1],
所以,当且仅当b+1=a+1,即b=a时,at-b能被a+1整除.(13分)
综上,在区间[1,a]上存在实数b,使C=A∩B≠∅成立,且当b=1时,C={y|y=a2n,n∈N*};当b=a时,C={y|y=a2n+1,n∈N}.
核心考点
试题【在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.(Ⅰ)若a1=b1,a2<b2,求数列{bn}】;主要考察你对集合运算等知识点的理解。[详细]
举一反三
已知集合A={2,7,-4m+(m+2)i}(其中i为虚数单位,m∈R),B={8,3},且A∩B≠∅,则m的值为.(  )
A.-2B.0C.-1D.1
题型:单选题难度:一般| 查看答案
已知集合M={0,1,3},N={x|x=3a,a∈M},则M∪N=(  )
A.{0}B.{0,3}C.{1,3,9}D.{0,1,3,9}
题型:单选题难度:简单| 查看答案
已知集合A={x|x2+2x-3<0},B={x
题型:x-1|<2},则A∩B=______.难度:| 查看答案
已知集合A={x|
x-5
x+2
<0},B={x|x>0},那么集合A∩B等于(  )
A.{x|-2<x<5}B.{x|x>0}C.{x|0<x<5}D.{x|0≤x<5}
题型:单选题难度:简单| 查看答案
集合M={x|lgx>0},N={x|x2≤4},则M∩N=______.
题型:填空题难度:一般| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.