当前位置: > 如何利用不等式A^2+B^2≥2AB ,证明大于等于一个小正方形面积的二分之一(毕达哥拉斯树)...
题目
如何利用不等式A^2+B^2≥2AB ,证明大于等于一个小正方形面积的二分之一(毕达哥拉斯树)

提问时间:2021-03-26

答案
A^2+B^2≥2AB
A^2+B^2-2AB=(A-B)^2≥0,
(A-B)^2代表一个边长为绝对值A-B,的正方形的面积,因其大于等于零所以
(A-B)^2≥(A-B)^2/2,命题得证!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.