当前位置: > 设矩阵满足方程A^2-A-2E=0,证明A与(A-E)都可逆,并求(A-E)...
题目
设矩阵满足方程A^2-A-2E=0,证明A与(A-E)都可逆,并求(A-E)

提问时间:2021-03-23

答案
由A^2-A-2E=0
可向A(A-E)=2E
所以A的逆为(A-E)/2
(A-E)的逆为A/2
所以A与(A-E)都可逆
(A-E)的逆是A/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.