当前位置: > 如图,如果边长为1的正六边形ABCDEF绕着顶点A顺时针旋转60°后与正六边形AGHMNP重合,那么点B的对应点是点 _ ,点E在整个旋转过程中,所经过的路径长为 _ (结果保留π)....
题目
如图,如果边长为1的正六边形ABCDEF绕着顶点A顺时针旋转60°后与正六边形AGHMNP重合,那么点B的对应点是点 ___ ,点E在整个旋转过程中,所经过的路径长为 ___  (结果保留π).
作业帮

提问时间:2021-01-02

答案
作业帮 ∵六边形ABCDEF是正六边形,
∴此六边形的各内角是120°,
∵正六边形ABCDEF绕着顶点A顺时针旋转60°后与正六边形AGHMNP重合,
∴B点只能与G点重合,
连接AE,过F点向AE作垂线,垂足为I,
∵EF=AF=1,IF⊥AE,
∴AE=2EI,
∵∠AFE=120°,
∴∠EFI=60°,
∴EI=EF•sin60°=1×
3
2
=
3
2

∴AE=2×
3
2
=
3

∴E点所经过的路线是以A为圆心,以AE为半径,圆心角为60度的一段弧,
∴E在整个旋转过程中,所经过的路径长=
60×π×
3
180
=
3
3
π.
故答案为:G、
3
3
π.
根据图形旋转的性质接可求出点B的对应点,再连接AE,过F点像AE作垂线,利用锐角三角函数的定义及直角三角形的性质可求出AE的长,再利用弧长公式接可求出E在整个旋转过程中,所经过的路径长.

旋转的性质;正多边形和圆;弧长的计算.

本题考查的是图形旋转的性质、正多边形和圆及弧长的计算、等腰三角形的性质,根据题意作出辅助线,构造出等腰三角形是解答此题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.