当前位置: > 已知定点A(3,0)和定圆:(x+3)^2+y^2=16,动圆与圆C相外切,并且过点A,求动圆圆心P的轨迹方程....
题目
已知定点A(3,0)和定圆:(x+3)^2+y^2=16,动圆与圆C相外切,并且过点A,求动圆圆心P的轨迹方程.

提问时间:2020-10-13

答案
可设P(x,y)
∵圆P与定圆C外切
∴|PC|=r+4,
又动圆P过点A(3,0)
∴|PA|=r,
∴|PC|-|PA|=4
由双曲线定义可知
动点P的轨迹是以A(3,0) C(-3,0)为焦点,
实轴长=4的双曲线的右支
方程为(x²/4)-(y²/5)=1 x>0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.