当前位置: > 已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1. (1)证明:|c|≤1; (2)证明:当-1≤x≤1时,|g(x)|≤2; (3)设a>0...
题目
已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1.
(1)证明:|c|≤1;
(2)证明:当-1≤x≤1时,|g(x)|≤2;
(3)设a>0,有-1≤x≤1时,g(x)的最大值为2,求f(x).

提问时间:2020-10-08

答案
(1)证明:由条件当=1≤x≤1时,
|f(x)|≤1,
取x=0得:|c|=|f(0)|≤1,
即|c|≤1.
(2)证法一:依题设|f(0)|≤1而f(0)=c,
所以|c|≤1.
当a>0时,g(x)=ax+b在[-1,1]上是增函数,
于是g(-1)≤g(x)≤g(1),(-1≤x≤1).
∵|f(x)|≤1,(-1≤x≤1),|c|≤1,
∴g(1)=a+b=f(1)-c≤|f(1)|+|c|=2,
g(-1)=-a+b=-f(-1)+c≥-(|f(-1)|+|c|)=-2,
因此得|g(x)|≤2  (-1≤x≤1);
当a<0时,g(x)=ax+b在[-1,1]上是减函数,
于是g(-1)≥g(x)≥g(1),(-1≤x≤1),
∵|f(x)|≤1  (-1≤x≤1),|c|≤1
∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.
当a=0时,g(x)=b,f(x)=bx+c.
∵-1≤x≤1,
∴|g(x)|=|f(1)-c|≤|f(1)|+|c|≤2.
综合以上结果,当-1≤x≤1时,
都有|g(x)|≤2.
证法二:∵|f(x)|≤1(-1≤x≤1)
∴|f(-1)|≤1,|f(1)|≤1,|f(0)|≤1,
∵f(x)=ax2+bx+c,
∴|a-b+c|≤1,|a+b+c|≤1,|c|≤1,
因此,根据绝对值不等式性质得:
|a-b|=|(a-b+c)-c|≤|a-b+c|+|c|≤2,
|a+b|=|(a+b+c)-c|≤|a+b+c|+|c|≤2,
∵g(x)=ax+b,∴|g(±1)|=|±a+b|=|a±b|≤2,
函数g(x)=ax+b的图象是一条直线,
因此|g(x)|在[-1,1]上的最大值只能在区间的端点x=-1或x=1处取得,
于是由|g(±1)|≤2得|g(x)|≤2,(-1<x<1).
证法三:∵x=
(x+1)2(x−1)2
4
=(
x+1
2
)2−(
x−1
2
)2
∴g(x)=ax+b=a[(
x+1
2
)2−(
x−1
2
)2]+b(
x+1
2
x−1
2
)
=[a(
x+1
2
)2+b(
x+1
2
)+c]−[a(
x−1
2
)2+b(
x−1
2
)+c]
=f(
x+1
2
)−f(
x−1
2
)

当-1≤x≤1时,有0≤
x+1
2
≤1,-1≤
x−1
2
≤0,
∵|f(x)|≤1,(-1≤x≤1),
∴|f (
x+1
2
)
|≤1,|f(
x−1
2
)|≤1;
因此当-1≤x≤1时,|g(x)|≤|f (
x+1
2
)
|+|f(
x−1
2
)|≤2.
(3)因为a>0,g(x)在[-1,1]上是增函数,
当x=1时取得最大值2,
即g(1)=a+b=f(1)-f(0)=2.①
∵-1≤f(0)=f(1)-2≤1-2=-1,
∴c=f(0)=-1.
因为当-1≤x≤1时,f(x)≥-1,
即f(x)≥f(0),
根据二次函数的性质,直线x=0为f(x)的图象的对称轴,
由此得-
b
2a
=0,
即b=0.
由①得a=2,
所以f(x)=2x2-1.(14分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.