当前位置: > 高数中值定理...
题目
高数中值定理
已知f(x)在[a,b]连续,在(a,b)可导,且f(a)=f(b)=0,求证在(a,b)至少有一点t属于(a,b),使得f(t)+f'(t)=0

提问时间:2020-08-10

答案
建议考虑函数 g(x)=f(x)e^x
因 f(x)在[a,b]连续,在(a,b)可导,且f(a)=f(b)=0
所以 g(x)在[a,b]连续,在(a,b)可导,且g(a)=g(b)=0
对 g(x)在(a,b)上应用罗尔中值定理可得
在(a,b)至少有一点t属于(a,b),使得 g'(t)=0
即 e^x {f(t)+f'(t)} =0 因 e^x >0 所以 f(t)+f'(t)=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.